Procedure

Section 1: CRC Algorithm (Turbo C)

() Step 1: Background

The very nature of programmed memory devices (EPROM, OTP, EEPROM) makes them
subject to long time reliability concerns by the designers of computer equipment. A typical
failure mechanism of an EPROM is for cells to “drop bits”. A dropped bit means that an
erased state of '1' (high energy) leaks and falls to a '0' (low energy) state some time after
being programmed. EEPROMs have other failure modes as well and all semiconductor
devices are subject to weakening or destruction by ESD.

We have seen in Micro 1 that parity bits can detect errors in serial data transmission, but that
they do a marginal job at best. The additive checksum found in every Motorola $19 record is
again a poor method for detecting errors. Hard drive controllers, industrial networks, and
other "mission critical” systems need a more useful method of detecting errors. That method
is the Cyclic Redundancy Check (CRC).

As a simple comparison, the first three bytes in the Micro11 Monitor EPROM, along with the
corresponding checksum and CRC are shown below:

Address Data Address Data
0xC000 OxFC 0xC000 OxFC
0xCO001 Ox7F 0xC001 Ox7F
0xC002 OxFE 0xC002 OxFE
Additive Result: 0x0279 CRC Result: 0x7123

Both the checksum and CRC would detect a simple change in data such as the OxFC
becoming OxF8 ("dropping” bit 2 in the lowest memory location). Now consider a simple
switch in data:

Address Data Address Data
0xCO000 Ox7F 0xCO000 Ox7F
0xCO001 OxFC 0xCO001 OxFC
0xC002 OxFE 0xC002 OxFE
Additive Result: 0x0279 CRC Result: 0x30B8

CNT-442 7 Jan - Apr 1997
Computer Engineering Technology Microcomputer Design 2

The CRC has detected the error, where the additive checksum has not. The Xeltek
programmer employs only a simple additive checksum. Professional models such as the
Kontron employ CRC methods. For this lab you will code, in C, the CRC algorithm used by

the Kontron programmer.

Professional programmers often use CRC's to "hack-proof” their final programs. A quick CRC
of a program as part of a start-up self-test can determine if any contents (even text strings)

have been altered. Thisis a tool you should keep!
Byte Memory Result CRC

CRC

Address Contents Bit (Binary) (Hex)

C000 FC=11111100

0000 0000 0000 0000 0000

bit 1
Step 1

CXORD«

0000 0000 0000 0000

> -y
Step 2 bit 3

0000 0000 0000 0000

Step 3 bit 5

0000 0000 0000 0000
bit 14

Step 4 CXORD

0—

After bit 0 of memory
location C000 has been

Now continue with the rest
of the data bits in C000
before going on to C001.

processed, the CRC is 0000.

0000 0000 0000 0000
(..................... -

Step 5: Multiply by 2

0000 0000 0000 0000

. Step 6: Ada

0 in result bit

CNT-442
Computer Engineering Technology

0000 0000 0000 0000 0000

New CRC Value!

8 Jan - Apr 1997

Microcomputer Design 2

() Step 2: Algorithm Specification

The Kontron CRC algorithm performs six operations on each bit of each byte of memory
under test to come up with a unique 16 bit signature. This algorithm has a very high
probability of detecting any change in the EPROM's data.

Two variables will be required by the CRC (not including loop counters):

ResultBit: The algorithm requires a boolean variable (single bit) to hold
intermediate CRC results. Since this value will be exclusive-or'ed
against an unsigned int, it might be wise to use an unsigned int.
Note that since the HC11 treats zero values so efficiently you may
just consider this value zero or nonzero.

CRC: A 16 bit unsigned variable will be needed to store the CRC result.

The algorithm is performed on successive memory locations (eg. CO00 to FFFF). Each bitin a
byte under test (say, each bit in C000) is processed in the bit sequence 0, 7, 6,5, 4, 3,2, 1.
Thus, the algorithm is performed on each bit of each byte under test. Therefore, when each
bit of CO00 has been processed then each bit of CO01 must be processed, etc. . . .

The six steps for each bit are:

1. Bit 1 of the 16 bit CRC is exclusive-ORed (XOR) with the bit under test (recall that
The orderis07 65 4 32 1). The result of this XOR is saved in ResultBit.

2. Bit 3 of the CRC is XORed with ResultBit. The result of this step is stored back
in ResultBit.

3. Bit 5 of the CRC is XORed with ResultBit. The result of this step is stored back
in ResultBit.

4. Bit 14 of the CRC is XORed with ResultBit. The result of this step is stored back
in ResultBit.

5. Ignoring ResultBit for a moment, the CRC is multiplied by 2 and it's carry discarded.

6. Step 5 will result in a “vacancy” in bit O of the CRC (ie. a zero was shifted into the
LSB). ResultBit is added to the CRC at bit O.

These six operations are performed on each bit for CO00 and then for each bit in C001, etc.
The final result is obtained after all bits in all memory locations have been processed. The
diagram on the previous page illustrates the six steps for the first bit under test for location
C000. Note that at the top of the page the CRC has been initialized to 0000 before the
program begins (same as the additive checksum).

CNT-442 9 Jan - Apr 1997
Computer Engineering Technology Microcomputer Design 2

The following table provides sample data for the first 3 bytes under test:

Location Contents Bit # ResultBit CRC (after all 6 steps)
0000 0000 0000 0000 = 0x0000

0xC000 OxFC b0 =0 0 0000 0000 0000 0000 = 0x0000
b7 =1 1 0000 0000 0000 0001 = 0x0001
b6 =1 1 0000 0000 0000 0011 = 0x0003
b5 =1 0 0000 0000 0000 0110 = 0x0006
b4 =1 0 0000 0000 0000 1100 = 0x000C
b3 =1 0 0000 0000 0001 1000 = 0x0018
b2 =1 0 0000 0000 0011 0000 = 0x0030
b1=0 1 0000 0000 0110 0001 = 0x0061

0xCO001 Ox7F b0 =1 0 0000 0000 1100 0010 = 0x00C2
b7=0 1 0000 0001 1000 0101 = 0x0185
b6 =1 1 0000 0011 0000 1011= 0x0308B
b5 =1 1 0000 0110 0001 0111 = 0x0617
b4 =1 0 0000 1100 0010 1110 = OxOC2E
b3 =1 0 0001 1000 0101 1100 = 0x185C
b2 =1 0 0011 0000 1011 1000 = 0x30B8
b1 =1 1 0110 0001 0111 0001 = Ox6171

0xC002 OxFE b0 =0 0 1100 0010 1110 0010 = OxC2E2
b7 =1 0 1000 0101 1100 0100 = 0x85C4
b6 =1 1 0000 1011 1000 1001 = 0x0OB89
b5 =1 0 0001 0111 0001 0010 = 0x1712
b4 =1 0 0010 1110 0010 0100 = 0x2E24
b3 =1 0 0101 1100 0100 1000 = 0x5C48
b2 =1 1 1011 1000 1001 0001 = 0xB891
b1 =1 1 0111 0001 0010 0011 = 0x7123

() Step 3: Program Definition

The following main program is to be used for this section of the lab. Your job is to write the
CRC() function code. The programming is to be done under Turbo C (and/or UNIX).

Sk sk Rk ok ok sk ko ok ok ok ko ok stk ok ok okl ol ok ok kol ok ok s ko ok ok ok ook

* CRC.C - Basic Kontron CRC algorithm operating on a set of four *
* numbers. Written in ANSI-C, but requires stdio.h. *
* *
* by YourName Here *
* Today's Date *

stk ok ok ok sk ok ok ok kol ok kool ok ok okl ok okt kot sk ok ok ok kR ok okl ok /

#include <stdio.h>

/*

| Prototype(s)

*/

unsigned int CRC(unsigned char *StartAddr, unsigned char *EndAddr);

CNT-442 10 Jan - Apr 1997
Computer Engineering Technology Microcomputer Design 2

/***

* int main(void) *
* *
* Requires: No command line parameters *
* Return value: 0 (always) *

***/

int main(void)

{
unsigned char MemoryArray[3] = { OxFC, 0x7F, OxFE };

unsigned int FinalResult;

FinalResult = CRC(&MemoryArray[0], &MemoryArray[2]);
printf(“\nFinal CRC: 0x%04x”, FinalResult);

return 0;

}

ﬁ

| unsigned int CRC(unsigned char *StartAddr, unsigned char *EndAddr); |
| |

| Performs a Kontron CRC algorithm over the address range provided. |
| |
| Requires: StartAddr - address of lowest memory location under test. |
| EndAddr - address of highest memory location under test. |
| Returns: The 16-bit Kontron CRC result value. |

*/
unsigned int CRC(unsigned char *StartAddr, unsigned char *EndAddr)

{
happy coding!

() Step 4: Verification

When you have verified that your solution works using the above three test values, check it
against some other values courtesy your HC11 board. Do a quick Memory/Dump of the
C000 block on the HC11 board and try running Options/Rom Test over some small ranges.
Plug some of those Micro11 memory values into the MemoryArray[] and rerun the program.
Once you are sure that your algorithm is operating properly, have it checked off.

Have a copy of your documented source file(s) available for viewing by your
instructor. All files must be completely documented at the time of checkoff.

CNT-442 11 Jan - Apr 1997
Computer Engineering Technology Microcomputer Design 2

